Capability Assessment of Distribution Network Reactive Power Supports for Transmission Network Using Linear Estimation

نویسندگان

  • Yue Guo
  • Haiyu Li
  • Kieran Bailey
چکیده

Transmission System Operators (TSOs) are currently experiencing a voltage rise problem on their network, especially during the periods of low demands. It is costly to mitigate the excessive voltages by installing reactors or Var compensators in transmission network. Recently, an alternative method of utilising the existing parallel transformers of distribution network is proposed. It uses a tap stagger technique, to address this problem. This paper investigates the VAr support capability of the tap stagger technique with the method of linear estimation. Two real different-sized subdistribution networks are modelled and their load flow results with the tap stagger operation are studied. Then the capability for the whole distribution network is estimated by the linear estimation method. The results indicate the capability is high and show the potential to provide sufficient reactive power services to transmission systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Locating and Sizing of Unified Power Quality Conditioner- phase Angle Control for Reactive Power Compensation in Radial Distribution Network with Wind Generation

In this article, a multi-objective planning is demonstrated for reactive power compensation in radial distribution networks with wind generation via unified power quality conditioner (UPQC). UPQC model, based on phase angle control (PAC), is used. In presented method, optimal locating of UPQC-PAC is done by simultaneous minimizing of objective functions such as: grid power loss, percentage of n...

متن کامل

Reliability estimation of Iran's power network

Today, the electricity power system is the most complicated engineering system has ever been made. The integrated power generating stations with power transmission lines has created a network, called complex power network. The reliability estimation of such complex power networks is a very challenging problem, as one cannot find any immediate solution methods in current literature. In this pape...

متن کامل

ESTIMATION OF GAS HOLDUP AND INPUT POWER IN FROTH FLOTATION USING ARTIFICIAL NEURAL NETWORK

Multivariable regression and artificial neural network procedures were used to modeling of the input power and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and R2=0.88 versus 0.52 in the non linear, respectively. ...

متن کامل

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016